Федерация Спортивной и Образовательной Робототехники

Фестиваль РОБОФИНИСТ 2024

Творческая категория

«Роботы и роботизированные системы в нефтегазовой отрасли»

Отчет по проекту «Очистка поверхности воды от нефтепродуктов» Команда «Горячая десятка»

Выполнил: Стрелков Денис, ученик 7 класса МОУ «СОШ №10 им. В.П.Поляничко» Руководитель: Лаврова Ксения Александровна Педагог дополнительного образования МОУ «СОШ №10 им. В.П.Поляничко»

Содержание

Визитка команды	. 3
Краткая идея проекта	
Этапы разработки проекта	
Презентация роботизированного решения	12
Разработка и создания модели аппаратного комплекса	14
Программа	18
Социальное взаимодействие и инновации	20

Визитка команды

Магнитогорск — второй по величине город в Челябинской области, в котором проживают более четырехсот тысяч человек. Наш город — один из нескольких городов мира, расположенных сразу в двух частях света: в Европе и Азии. Магнитогорск делит пополам река Урал. Правый берег реки застроен жилыми кварталами. Практически весь левый берег занимает металлургический комбинат и другие промышленные предприятия. Магнитогорск - один из крупнейших мировых центров черной металлургии. Неофициально наш город именуют "металлургической столицей России", "стальным сердцем Родины". Нашему городу присвоено почетное звание "Город трудовой доблести и славы".

В южной части города расположена школа №10, которая носит имя государственного и политического деятеля России Виктора Петровича Поляничко (МОУ «СОШ № 10 им. В.П. Поляничко» г. Магнитогорска, Юридический адрес: Челябинская область, город Магнитогорск, улица Тевосяна, дом 27, корпус 3, телефон 8(3519)411241). С 2013 года школа является ресурсным центром образовательной робототехники.

Состав команды "Горячая десятка":

- 1. Стрелков Денис, 13 лет, 7 класс
- Инженер-конструктор. Ответственный за конструкцию. Создает различные механизмы при помощи конструктора EV3.
- 2. Руководитель команды: Лаврова Ксения Александровна, педагог дополнительного образования МОУ «СОШ №10 им. В.П. Поляничко» г. Магнитогорска.

Краткая идея проекта

Процессы добычи, транспортировки, переработки и утилизации зачастую сопровождаются выделениями вредных веществ в атмосферу и разливами нефтепродуктов.

Таким образом, нефть и нефтепродукты попадают в окружающую среду и наносят ей экологический ущерб. Страдают все компоненты экосистемы: почвы, водоемы, атмосфера, растительный и животный мир.

При аварийном разливе нефтепродуктов по водной поверхности решаются три основные задачи: локализация, сбор и удаление нефтепродуктов с поверхности воды. Причем все они должны решаться быстро, так как с потерей времени решение их осложняется. Безопасность жизнедеятельности человека и подводного мира находится под угрозой.

Существует много методов, позволяющих эффективно бороться с загрязнениями нефтью и нефтепродуктами. Изучив и проанализировав эти методы, мы предположили, что метод сорбционной очистки вод является безопасным, эффективным экологически что является главными выбора способа очистки критериями ДЛЯ ВОД OT нефтепродуктов. Сорбирующие вещества – это пористые или волокнистые структуры, которые поглощают нефть. Такие вещества не наносят ущерба экологии, не меняют состав воды, после поглощения ими нефти они удаляются с поверхности воды и утилизируются.

В качестве органических сорбентов можно использовать высушенные зерновые продукты. В нашем крае выращивают много видов зерновых культур. Но на сегодняшний день известно всего три способа утилизации, например, рисовых отходов: создание специальных отвалов, добавление рисовой лузги в строительные материалы в качестве дополнительных присадок, третий - сжигание (самый распространенный в России), поэтому мы решили на практике проверить можно ли использовать в качестве сорбента опилки.

В ходе работы, намерены подтвердить, либо опровергнуть уже известную информацию об эффективности метода очистки воды с помощью сорбентов. Исследовать способность сорбентов извлекать нефть и выявить самый эффективный и экологически безопасный.

Создать модель для фильтрации воды от нефти и модель робота для очистки поверхности воды от нефти.

Цель работы:

разработать способ очистки водной поверхности от нефти и нефтепродуктов и исследовать эффективность сорбирующих веществ, способных извлекать нефть с поверхности воды.

Задачи работы:

- 1. Изучить теоретические основы методов очистки вод от нефтяных загрязнений.
- 3. Оценить способность органических и неорганических сорбентов извлекать нефть и выявить самый эффективный и экологически безопасный.
 - 4. Подобрать варианты оборудования.

Методы исследования:

- 1.Поисковый (сбор информации)
- 2. Практическая работа (эксперимент).
- 3. Анализ собранной информации, сравнение, систематизация, обобщение материала

Этапы разработки проекта

1.1 Мы изучили, что такое нефть. Нефть — это маслянистая жидкость от желтого или светло-бурого до черного цвета с характерным запахом. Она легче воды и в ней практически нерастворима. Нефть представляет собой смесь примерно 150 углеводородов с примесями других веществ, поэтому у нее нет определенной температуры кипения.

В зависимости от месторождения нефть имеет различный состав. Наиболее часто встречаются нефти смешанного состава. По плотности различают легкую и тяжелую нефть. Подавляющая часть месторождений нефти приурочена к осадочным породам.

Цвет и запах нефти в значительной степени обусловлены присутствием азот-, серо- и кислородсодержащих компонентов, которые концентрируются в смазочном масле и нефтяном остатке. Большинство углеводородов нефти (кроме ароматических) в чистом виде лишено запаха и цвета. Также содержит соединения серы, азота, металлоорганические комплексы; естественные радиоактивные элементы (уран, торий).

При разливе нефти в воде она поднимается на поверхность водоема и растекается по ней тонкой, плотной масляной пленкой, затрудняя поступление кислорода в воду и препятствуя дыханию водной фауны. [1]

Таким образом, основными признаками наличия нефтепродуктов в воде будут следующие:

- радужная пленка на поверхности воды;
- масляное пятно на фильтровальной бумаге после высыхания нанесенной пробы воды.
- 1.2. Изучили методы сбора и извлечения нефтепродуктов с поверхности воды.

В настоящее время существует несколько методов:

1. Ручной метод, применяется при очистке загрязнении отмелей, береговой кромки и почвы. Для очистки используют ручные инструменты,

такие как ведра, лопаты или сети. В случае загрязнения зарослей и травы может так же применяться промывка струями воды с последующим сбором и очисткой промывочной воды;

- 2. Термический метод, один из самых первых способов ликвидации разлива нефти и нефтепродуктов. Основан на выжигании слоя нефти, применяется при достаточной толщине слоя и непосредственно после загрязнения, до образования эмульсий с водой. Его используют в сочетании с другими методами ликвидации разлива при толщине пленки нефтепродукта более 3 мм, скорости ветра менее 35 км/ч, безопасном расстоянии до 10 км от места сжигания по направлению ветра. При использовании необходимо применение дополнительных противопожарных мер.
- 3. При физико-химическом методе при обработке нефти химическими реагентами из воды удаляются тонкодисперсные и растворенные примеси и разрушаются органические и плохо окисляемые вещества нефти.
- 4. Механические методы наиболее эффективны и являются одним из основных методов ликвидации разлива нефти или тяжелых фракций нефтепродуктов. Основываются на извлечение нефти и его продуктов при помощи сорбентов, автономных средств сбора, самоходных судов нефтесборщиков.
- 5. Микробиологический метод используется после применения механического и физико-химического методов для полного восстановления экосистемы. Микроорганизмы, вживаемыев водную среду, способствуют разложению нефтепродуктов. Микробиологический метод применяется как дополнительный при толщине пленки не менее 0,1 мм.[2]

Мы сравнили все методы и предположили, что физико-химический с применением сорбентов более доступный и экологически подходящий для природы.

1.3. Изучили сорбенты. В настоящее время в мире для борьбы с нефтяными разливами применяется порядка двухсот видов сорбентов. В зависимости от типа сорбции различают следующие виды сорбентов:

- Абсорбент это тело, образующее с поглощённым веществом твёрдый или жидкий раствор. Наиболее распространенными являются абсорбенты, применяемые для ликвидации разливов нефти, нефтепродуктов и химических веществ: абсорбенты на основе стружки скорлупы кокосового ореха (Shelltic C), торфяного мха, вспученного перлита, окисленного терморасширяющегося графита, полипропилена (Polabic O) и др. [3]
- Адсорбент— это тело, поглощающее (сгущающее) вещество на своей сильно развитой поверхности. Наиболее распространены: активированный уголь (Carbonut WT), активированный оксид алюминия (Alumac A), силикагель, диоксид кремния (кремнезем) и др.
- Химические поглотители (сорбенты) это тела, которые связывают поглощаемое вещество (сорбат), вступая с ним в химическую реакцию.

Сорбенты разделяются на следующие категории:

- неорганические;
- органические (природные);
- органические минеральные;
- синтетические.

Основными качественными характеристиками этих веществ являются:

- нефтеёмкость;
- степень гидрофобности;
- показатель плавучести после впитывания нефти;
- возможность удаления нефти из сорбента;
- возможность регенерации сорбента;
- утилизируемость.

Сорбент для сбора нефтепродуктов часто применяется в комплексе с механическими способами нефтесбора. При этом такие методы могут быть применены как до использования сорбентов, так и после него. Эти вещества фиксируют нефть и предотвращают образование ею эмульсий. [4]

Неорганические виды сорбентов

К таким веществам относятся:

- 1. различные глины
- 2. рыхлые диатомовыепороды (например, кизельгур)
- 3. песок
- 4. различные виды цеолитов
- пемза
- 6. туфы

Большую часть предлагаемых на рынке сорбентов этого типа составляют глины и диатомиты, поскольку они стоят недорого, а их больших объемах. Также производство возможно В популярностью пользуется песок, который в основном используется для сорбции разливов небольшой площади. Однако по экологическим соображениям применение сорбентов такого вида неэффективно. Это связано с тем, что их нефтеёмкость находится на низком уровне (от 70 до 150 процентов при сорбции нефти). Кроме того, они не способны удерживать легкие нефтяные фракции, такие, как бензины, керосины и дизельные виды топлива. На воде их применение невозможно, поскольку они тонут вместе с нефтепродуктами, что, конечно, не решает проблему. Третьей причиной неэффективности неорганических сорбентов является их утилизация, единственными способами которой являются либо промывка водой с поверхностно-активными веществами, либо экстрагентами, либо их выжигание.

Органические (природные) и органоминеральные сорбенты считаются наиболее перспективными при ликвидации нефтепродуктов загрязнений.

В качестве гидрофобного сорбента для сбора нефтепродуктов используется:

- древесная щепа;
- опилки;
- модифицированные торфы;
- высушенные зерновые продукты;

- шерсть;
- макулатура.

Очень эффективный сорбент нефтепродуктов органического происхождения — это шерсть, которая своей нефтеёмкостью не уступает модифицированным торфам. Всего один килограмм шерстного сорбента способен впитать до 8-ми — 10-ти килограмм нефти. Кроме того, природная упругость дает возможность отжимать из неё большую часть легких нефтепродуктов.

К недостаткам шерстного сорбента относится то, что спустя несколько отжимов он пропитывается битумом, после чего его использование становится невозможным. Также существенными недостатками являются дороговизна шерсти, недостаток её количества и строгие требования, предъявляемые к условиям хранения (защита от насекомых и грызунов, способность к превращениям биохимического характера и так далее). Все это объясняет тот факт, что перспективным такой сорбент не считается. Достаточно эффективным природным сорбентом для нефтепродуктов считаются отходы, остающиеся после производства льна.

Хорошо и быстро впитывают нефтепродукты и сырую нефть опилки, однако влагу они впитывают еще лучше. В связи с этим возникает необходимость по окончании их глубокой сушки пропитывать опилки водоотталкивающими средствами (к примеру, жирными кислотами). Получаемое в результате такой пропитки покрытие обладает хорошими гидрофобными свойствами, что весьма важно для любых нефтяных сорбентов, однако, увы, оно весьма недолговечно

Аналогичная проблема характерна и для торфа, который по своей нефтеёмкости значительно превосходит опилки, а верховые торфы моховой группы впитывают нефть даже лучше, чем шерсть.

Отработанные сорбенты, как правило, вывозятся на специальные свалки, либо формуются в топливные брикеты. Также их можно применять как смолосодержащие добавки в асфальтовых смесях или кровельных

материалах. В качестве топлива можно использовать лишь естественные сорбенты органоминерального типа с низким показателем зольности.

Синтетические сорбционные фильтры можно применять при концентрации нефтепродуктов в стоках до одной тысячи миллиграмм на литр. Сточная вода отфильтровывается слоем синтетического материала, и тем самым освобождается от загрязнений. После насыщения, синтетические сорбенты подвергают регенерации путем трехкратного механического сжатия с последующей промывкой при помощи воды.

Мы предлагаем наборы и комплексы для локализации и ликвидации разливов самого широкого диапазона веществ:

- нефти, мазута, масел, бензина и прочих нефтепродуктов;
- химически агрессивных веществ, растворителей, охлаждающих и прочих технических жидкостей.

Мобильные контейнеры на колесах укомплектованы сорбирующими изделиями, в том числе гидрофобными (сорбенты, салфетки, подушки, боны) и вспомогательными изделиями (метла, совок, мешок, перчатки и др.).

Презентация роботизированного решения.

Исследование

Для проведения исследования нам понадобилось следующее оборудование и вещества: мерный цилиндр, химическая посуда, дистиллированная вода, морская вода, индикаторы, сорбенты, сырая нефть. В качестве сорбентов я применила: активированный уголь, «Полисорб», мох, опилки, песок, вату, шерсть.

Для первого опыта мы взяли две чаши с водой: одна чаша была наполнена пресной водой, другая была заполнена морской водой.

В морскую и пресную воду мы добавили одинаковый объем сырой нефти. Нефть на поверхности воды образовала нефтяное пятно. Площадь разлива нефти по поверхности воды была неодинакова: в пресной воде диаметр составил- 2,9см, в морской- 2,3см.

Можно сделать вывод, что площадь разлива нефти в пресной воде больше, чем в морской, а толщина нефтяного пятна меньше.

В ходе второго опыта было приготовлено 7 образцов смеси из нефти и пресной воды объемом 50 мл и 0,5 мл нефти, столько же образцов смеси с морской водой.

Добавляя в каждый образец определенный сорбент, указанный выше, мы наблюдали за поглощением сорбентом нефти. Нами было определено время, в ходе которого происходила очистка воды от нефтяного пятна. (таблица 1). Далее мы удалили отработанные сорбенты механическим путем в образцах

№п/п	Сорбент	Время очистки в	Время очистки в	
		морской воде	пресной воде	
1	Активированный уголь	22 минуты	20 минут	
2	Полисорб	30 минут	25 минут	
3	Mox	45 секунд	5 минут	
4	Опилки	40 минут	30 минут	
5	Песок	40 минут	35 минут	
6	Вата	11 минут	10 минут	
7	Шерсть	11 минут 12	10 минут	

№3,№4,№5,№6,№7 или разделила смесь с помощью отстаивания и фильтрования в образцах №1,№2,№5. Затем мы сравнивали внешний вид воды и оценили в баллах (таблица 2).

нешний вид воды	Балл
Отсутствие пленок	1
Отдельные пятна и серые пленки на поверхности воды.	2
Радужные пленки на поверхности воды.	3
Нефть покрывает большую часть поверхности воды	4

На основании результатов второго опыта можно сделать вывод, что действие сорбентов в соленой и пресной воде практически не отличаются.

Время, потраченное на очистку, было различным, значительно быстрее очистка происходит с помощью сорбента №3.

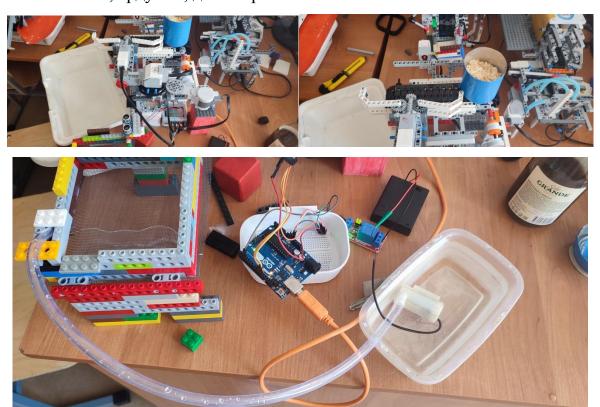
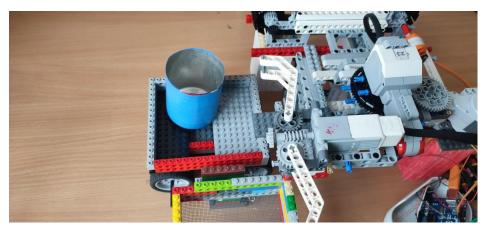
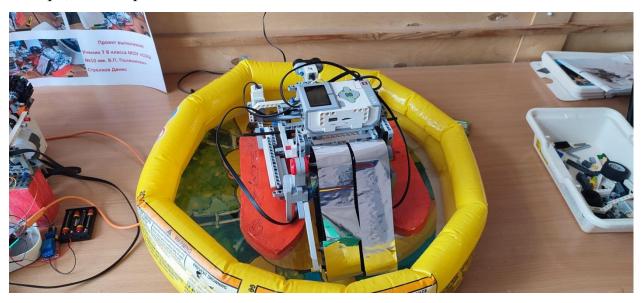

Органолептическими методами удалось описать образцы воды после очистки. Результаты проведённого эксперимента представлены в таблице №3. По степени прозрачности во всех пробах, кроме пробы № 1, очищенная вода прозрачная. По цветности наиболее ярко выраженную окраску имела проба № 1, пробы № 2, 4, 5 имели на поверхности едва заметное радужное пятно, что подтверждает неполную очистку воды от нефти. По запаху проба № 5 имела характерный запах нефти, в остальных пробах запах был резким, пары нефти не полностью поглотились сорбентами.

Таблица №3 Результаты опытов по очистке воды показали, что наиболее качественно поглощает нефть образец №4.

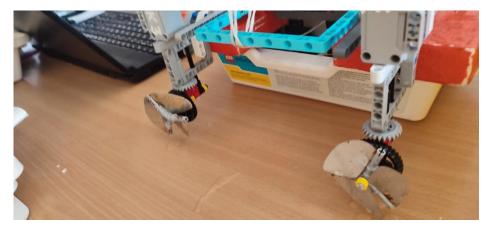
Образец		Внешний вид	Внешний вид	Запах
		пресной воды	морской воды	
Контрольный	Чистая вода	1	1	Нет запахов
1	Уголь	3	3	Резкий запах
1	активированный			
2	«Полисорб»	2	2	Резкий запах
3	Mox	2	2	Заметный запах
4	Опилки	1	1	Резкий запах
5	Песок	3	3	Резкий запах
6	Вата	1	1	Заметный запах
7	Шерсть	1	1	Заметный запах


Разработка и создания модели аппаратного комплекса

Станция фильтрация состоит из блока управления, 4 моторов, датчика цвета, макетная плата, ардуино, датчик расстояния и насос.


Манипулятор предназначен для захвата банки с опилками. В конструкции имеется средний мотор и червячная передача. Так же есть датчик цвета, который определяет банку.

После захвата банки робот перемещает её над сеткой. Далее следующий мотор опрокидывает банку и высыпает содержимое. Пустую банку отправляет в машину, для дальнейшей переработки. После манипулятор возвращается в исходное положение.


Робот для очистки нефти с поверхности воды

Робот состоит из транспортерной ленты с алюминиевой поверхностью, 4 мотора, датчик расстояния.

Наш робот держится на пенопласте. Он сделан в виде двух лыж для хорошего скольжения по воде.

Для движения робота используется два средних мотора, на которые закреплены винты. Они сделаны из нержавеющего металла.

Для сбора нефти используется лента с алюминиевой поверхностью. А теперь объясним почему именно алюминий.

Физические свойства алюминия

Алюминий — лёгкий, серебристо-белый, пластичный, обладает высокой тепло- и электропроводностью. Лёгкость, прочность, высокая тепло- и электропроводность в сочетании с коррозионной стойкостью обусловливают его широкое применение в технике и быту. Из алюминия и его сплавов изготавливают корпуса самолётов и судов на подводных крыльях, электрические провода, посуду.

Химические свойства алюминия

Алюминий — химически активный металл. На воздухе алюминий покрывается чрезвычайно прочной оксидной плёнкой, которая защищает его от химического воздействия. Поэтому большинство реакций алюминия с различными веществами начинается не сразу, а через некоторое время, в течение которого происходит разрушение оксидной пленки.

Из-за наличия оксидной пленки алюминий при обычных условиях не реагирует с водой и сероводородом. Алюминий, очищенный от оксидной пленки, начинает активно реагировать с водой и неметаллами. Алюминий проявляет достаточно сильные восстановительные свойства.

Можно сделать вывод, что Алюминий — металл 3-группы Периодической системы Д.И. Менделеева. Вследствие высокой химической активности алюминий встречается в природе только в виде соединений Алюминий — самый распространённый на Земле металл.


Алюминий сильный восстановитель, он реагирует с простыми и сложными веществами.

Поверхность алюминия покрыта прочной оксидной плёнкой, которая предохраняет алюминий от окисления и придаёт ему коррозионную стойкость. Лишённый оксидной плёнки, алюминий бурно реагирует с водой с выделением водорода.

Оксид и гидроксид алюминия проявляют амфотерные свойства и реагируют как с кислотами, так и с основаниями. Лёгкость, высокая тепло- и электропроводность алюминия в сочетании с коррозионной стойкостью

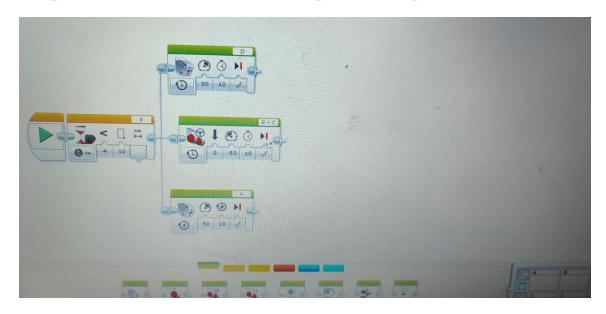
обусловливают его широкое применение в технике и быт. Поэтому мы его использовали для сбора нефти.

Так же для сбора нефти имеется коробка, которая находится прям под лентой.

Программа


Для блока станции фильтрации используется два программных обеспечений. Один для блока EV3, другой для ардуино.

Плата ардуино используется для накачивания воды с нефтью в бак фильтрации.


Принцип работы состоит в том, что имеется датчик расстояния и как только он замечает, что есть банка с опилками после этого, подается сигнал на реле, а реле в свою очередь запускает насос. Питание осуществляется с помощью 4 пальчиковых батарей. Расстояние, которое определяет датчик — это меньше четырех сантиметров.

```
oo 123 | Arduino 1.8.6 Hourly Build 2017/11/13 11:33
                                                                                                                                                                                                                                              define PIN_TRIG 11
#define PIN_ECHO 12
#define PIN_RELAY 3
long duration, cm;
 void setup() {
  // Инициализируем взаимодей pinMode (PIN RELAY, OUTPUT);
                                     ействие по последовательному порту
   pinMode(PIN_TRIG, OUTPUT);
pinMode(PIN_ECHO, INPUT);
 void loop() {
   // Сначала генерируем короткий импульс длительностью 2-5 микросекунд.
   digitalWrite(PIN_TRIG, LOW);
   delayMicroseconds(5);
digitalWrite(PIN_TRIG, HIGH);
   // Выставив высокий уровень сигнала, ждем около 10 микросекунд. В этот момент датчик будет посылать сигналы с частотой 40 КГц.
   delayMicroseconds(10);
digitalWrite(PIN_TRIG, LOW);
   // Время задержки акустического си:
duration = pulseIn(PIN_ECHO, HIGH);
   // Теперь осталось преобразовать время в расстояние
   cm = (duration / 2) / 29.1;
   Serial.print("Расстояние до объекта: ");
   Serial.print(cm);
Serial.println(" cm.");
   // Задержка между измерениями для корректной работы скеча
ce.ay(ZSO);
if (cm < 4) { // На этом этапе происходит вкл/выхл светодиода
digitalWrite(PIN_RELAY, LOW); // Включаем реле — посылаем низкий уровень сигнал
delay(5000);
```

У блока EV3 программа линейная с ожиданием по датчику цвета, который определяет банку.

Робот для очистки поверхности воды от нефтепродуктов используется программа с ветвление. Несколько программ выполняется параллельно друг от друга. Робот начинает движения при датчике расстояния.

Социальное взаимодействие и инновации

В первой четверти нынешнего века нефтяные загрязнения стали ведущим фактором негативного техногенного воздействия на водные экосистемы. С увеличением объемов добычи, переработки и транспортировки нефти и нефтепродуктов неуклонно растет загрязнение природных вод. По данным Комитета по природным ресурсам и экологии Государственной Думы РФ ежегодно в России происходит более 60 крупных аварий и около 20 тыс. инцидентов, сопровождающихся значительными разливами нефти. Так, например в 2023 г. в России было зарегистрировано 8 126 разливов нефти. Абсолютными рекордсменами по загрязнению окружающей среды стали компании «Роснефть» (4 253 случая) и «ЛУКОЙЛ» (1 508). Согласно данным Всемирного фонда охраны дикой природы (WWF), каждый год в нашей стране в окружающую среду попадает около 4,5 млн тонн нефти, что составляет примерно 1% от ежегодной добычи. Главная причина этого – изношенные нефтепроводы: по статистике, в том же 2018 году подавляющее большинство аварий (97%) случилось именно из-за коррозии труб. Утечки нефти происходят не только из-за эксплуатации устаревшего оборудования. Потенциальным источником загрязнения может стать любой объект нефтяного комплекса – скважины, нефтехранилища, морские нефтяные платформы, приёмо-сдаточные пункты и т.п.

Разлив нефти на Таймыре (р. Хатанга)

Не следует думать, что Россия лидер среди нефтедобывающих стран по потерям нефти и уровню нефтяных загрязнений – список наиболее крупных разливов нефти в мире. Мировой опыт аварий, связанных с утечкой нефти, свидетельствует об обратном. В нашей стране факты утечек нефти, даже

небольших, находятся на строгом контроле государственных органов. Так в действующем российском законодательстве чётко указано, что нефтяные компании обязаны принимать меры по предупреждению и ликвидации разливов нефти и нефтепродуктов в водоёмы.

В случае аварии предприятию грозят штрафные санкции с приостановкой деятельности.

Обобщая, можно заключить, что нефтяные загрязнения акваторий представляют собой серьёзную угрозу для всего. Поэтому ликвидация аварийных разливов нефти — животрепещущая проблема современной науки и техники.

Сейчас на данный момент используются скиммеры олеофильные предназначены для сбора аварийных разливов нефти и нефтепродуктов с водной поверхности (река, озеро, водохранилище, отстойники) в окружении боновых заграждений.

Принцип действия скиммеров олеофильного типа:

- вращающаяся щетка проходит через слой нефть/вода,
- нефть налипает на щетку, вода скатывается,
- щетка очищается о скребок и нефть попадает в сборную емкость скиммера,
- нефть перекачивается откачивающей головкой на берег в резервуар временного хранения.

Данное оборудование по принципу работы похож на нашу модель. Но в

нашей модели есть преимущество по сравнению со скиммером. В нашей модели используется лента с алюминиевым покрытием, что дает большое преимущества по сравнению с щеткой, которая может подвергаться к различным реакциям.

Поэтому наши модели могут использоваться на различных предприятиях для устранения последствий аварий.

Остается подвести итоги, проанализировать результаты проделанной работы. В ходе исследования нам удалось выполнить ряд поставленных перед собой целей и задач:

- 1. В ходе поисковой работы в различных источниках информации, были изучены основы методов очистки вод от нефтяных загрязнений. И по моему мнению физико-химический метод с применением сорбентов более доступный и экологически подходящий для природы.
- 2. При сравнении площади разлива нефтяного пятна по поверхности пресной и морской воды, было установлено экспериментальным путем, что площадь разлива нефти в пресной воде больше, чем в морской, а толщина нефтяного пятна меньше.
- 3. При оценивании способности органических и неорганических сорбентов извлекать нефть с поверхности воды было выявлено, что самым эффективным и экологически безопасным сорбентом является опилки.

За последние 20 лет из-за аварий на нефтяных скважинах во время транспортировки в окружающею среду вылилось около 7 миллионов тонн сырой нефти, тем самым она загрязняет воду и убивает подводный мир. Именно поэтому наши роботы могут использоваться в случае аварийной утечке нефтепродукта.